

Lecture 08: **Set Theory Revisited**

Outline for Today

- *Proofs on Sets*
	- Making our intuitions rigorous.
- *Formal Set Definitions*
	- What do our terms mean?
- *Appendices: Examples*
	- Sample proofs to help you get the hang of the ideas here.

Recap from Last Time

New Stuff!

Proving Results from Set Theory

Claim: If *A*, *B*, and *C* are sets where $A \in B$ and $B \in C$, then $A \in C$.

Proof (?): Assume *A*, *B*, and *C* are sets where $A \in B$ and $B \in C$. We need to show that $A \in \mathcal{C}$.

Since $A \in B$, we know that A is contained in B. Since $B \in C$, we know that *B* is contained in *C*. Therefore, because *A* is contained in *B* and *B* is contained in *C*, we know that *A* is contained is *C*. This means that $A \in C$, as required.

Claim: If *A*, *B*, and *C* are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof (?): Assume *A*, *B*, and *C* are sets where $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B. Since $B \subseteq C$, we know that *B* is contained in *C*. Therefore, because *A* is contained in *B* and *B* is contained in *C*, we know that *A* is contained is *C*. This means that $A \subseteq C$, as required.

> Which (if any) of these claims are true? Answer at

<https://cs103.stanford.edu/pollev>

Lie: If *A*, *B*, and *C* are sets where $A \in B$ and $B \in C$, then $A \in C$.

Bad Proof: Assume *A*, *B*, and *C* are sets where $A \in B$ and $B \in C$. We need to show that $A \in C$.

Since $A \in B$, we know that A is contained in B. Since $B \in C$, we know that *B* is contained in *C*. Therefore, because *A* is contained in *B* and *B* is contained in *C*, we know that *A* is contained is *C*. This means that $A \in C$, as required.

Theorem: If *A*, *B*, and *C* are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Bad Proof: Assume *A*, *B*, and *C* are sets where $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B. Since $B \subseteq C$, we know that *B* is contained in *C*. Therefore, because *A* is contained in *B* and *B* is contained in *C*, we know that *A* is contained is *C*. This means that $A \subseteq C$, as required.

> This can't be a good proof; the same basic argument proves a false claim!

Claim: Let *A*, *B*, and *C* be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Proof (?): Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of *A* are also in *C*. Therefore, all elements of *A* are in both *B* and *C*. Therefore, we see that $A \subseteq B \cap C$.

Claim: Let *A*, *B*, and *C* be sets. If $A \subsetneq B$ and $A \subsetneq C$, then we have $A \subseteq B \cap C$.

Proof (?): Assume $A \subsetneq B$ and $A \subsetneq C$. We need to show $A \subsetneq B \cap C$.

Since $A \subseteq B$, all elements of A are in B and there are other elements of *B*. Since $A \subsetneq C$, all elements of *A* are also in *C* and there are other elements of *C*. Therefore, all elements of *A* are in both *B* and *C*, and there are some other elements in *B* and *C*. Therefore, we see that $A \subsetneq B \cap C$.

(Reminder: S ⊊ *T means* $S \subseteq T$ and $S \neq T$.)

Which (if any) of these claims are true? Answer at

<https://cs103.stanford.edu/pollev>

Theorem: Let *A*, *B*, and *C* be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Bad Proof: Assume $A ⊆ B$ and $A ⊆ C$. We need to show $A ⊆ B ∩ C$.

Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of *A* are also in *C*. Therefore, all elements of *A* are in both *B* and *C*. Therefore, we see that $A \subseteq B \cap C$.

Lie: Let *A*, *B*, and *C* be sets. If $A \subsetneq B$ and $A \subsetneq C$, then we have $A \subseteq B \cap C$.

Bad Proof: Assume $A \subsetneq B$ and $A \subsetneq C$. We need to show $A \subsetneq B \cap C$.

Since $A \subseteq B$, all elements of A are in B and there are other elements of *B*. Since $A \subsetneq C$, all elements of *A* are also in *C* and there are other elements of *C*. Therefore, all elements of *A* are in both *B* and *C*, and there are some other elements in *B* and *C*. Therefore, we see that $A \subseteq B \cap C$.

(Reminder: S ⊊ *T means* $S \subseteq T$ and $S \neq T$.)

What Went Wrong?

- The style of arguments you've just seen are *not* how to prove results on sets.
- As you've seen:
	- The reliance on high-level terms like "contained" is not mathematically precise.
	- A discussion of "all elements" of a set is not how to reason about collections of objects.
- **Question:** How do we write rigorous proofs about sets?

The Importance of Definitions

- As you saw last week, formal definitions underpin mathematical proofs.
- The major issue from the previous proofs is that we haven't defined what our terms mean.
	- How do we define what $A \in B$ means?
	- How do we define what $A \subseteq B$ means?
	- How do we define what *A* ∩ *B* means?
- Think back to our proof triangle: we currently have intuitions for these concepts, but not formal definitions.

Proofs on Subsets

Theorem: If *A*, *B*, and *C* are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Defining Subsets

● Formally speaking, if *S* and *T* are sets, we say that $S \subseteq T$ when the following holds:

∀*x* **∈** *S***.** *x* **∈** *T*

- Now, suppose you're working with a proof where you encounter $S \subseteq T$. Think back to the proof table.
	- To *assume* that $S \subseteq T$, what should you do?
	- To *prove* that $S \subseteq T$, what should you do?

Answer at

<https://cs103.stanford.edu/pollev>

A Correct Proof on Sets

- *Theorem:* If *A*, *B*, and *C* are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- *Proof:* Let *A*, *B*, and *C* be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required. ■

Theorem: If *A*, *B*, and *C* are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let *A*, *B*, and *C* be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required. ■

Bad Proof: Assume *A*, *B*, and *C* are sets where $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B. Since $B \subseteq C$, we know that *B* is contained in *C*. Therefore, because *A* is contained in *B* and *B* is contained in *C*, we know that *A* is contained is *C*. This means that $A \subseteq C$, as required.

Unions and Intersections

Theorem: Let *A*, *B*, and *C* be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Unions and Intersections

• The statement $x \in S \cap T$ is defined as

x **∈** *S* *****n x* **∈** *T***.**

• The statement $x \in S \cup T$ is defined as

x **∈** *S* **∨** *x* **∈** *T.*

• These are operational definitions: they show how unions and intersections interact with the ϵ relation rather than saying what the union or intersection of two sets "are."

- *Theorem:* Let *A*, *B*, and *C* be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.
- *Proof:* Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that *x* ∈ *B* ∩ *C*.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Since $x \in A$ and $A \subseteq C$, we know $x \in C$. Therefore, we see that $x \in B$ and $x \in C$, so $x \in B \cap C$, as required.

Theorem: Let *A*, *B*, and *C* be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

- *Proof:* Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that *x* ∈ *B* ∩ *C*.
	- Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Since $x \in A$ and $A \subseteq C$, we know $x \in C$. Therefore, we see that $x \in B$ and $x \in C$, so $x \in B \cap C$, as required.
- *Bad Proof:* Assume $A \subseteq B$ and $A \subseteq C$. We need to show *A* ⊆ *B* ∩ *C*.

Since $A \subseteq B$, all elements of A are in B . Since $A \subseteq C$, all elements of *A* are also in *C*. Therefore, all elements of *A* are in both *B* and *C*. Therefore, we see that $A \subseteq B \cap C$.

Set Equality

Theorem: Let *A* and *B* be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: See appendix!

Set-Builder Notation

Set-Builder Notation

• Let *S* be the set defined here:

S = { *n* | *n* ∈ ℕ and *n* ≥ 137 }

- Now imagine you have some quantity *x*. Based on this…
	- ... if you *assume* that $x \in S$, what does that tell you about *x*?
	- ... if you need to *prove* that $x \in S$, what do you need to prove?

Answer at *<https://cs103.stanford.edu/pollev>*

Set-Builder Notation

• Like unions and intersections, we have an operational definition for set-builder notation. It's the following:

$\text{Let } S = \{ y \mid P(y) \}.$ Then $x \in S$ when $P(x)$ is true.

- So, for example:
	- $x \in \{ n | n \in \mathbb{N} \text{ and } n \text{ is even } \}$ means $x \in \mathbb{N}$ and x is even.
	- \bullet *x* ∈ { *n* | ∃*k* ∈ N. *n* = 2*k* + 1} means that there is a *k* ∈ N where $x = 2k + 1$. (Equivalently, x is an odd natural number)
- *Key Point:* The placeholder variable disappears in all these examples. After all, *it's just a placeholder.*

Proofs on Set-Builder Notation

Some Useful Notation

• If *n* is a natural number, we define the set **[***n***]** as follows:

$$
[n] = \{ k \mid k \in \mathbb{N} \land k < n \}
$$

- So, for example:
	- $[3] = \{0, 1, 2\}$
	- $[0] = \emptyset$
	- $[5] = \{0, 1, 2, 3, 4\}$

Theorem: If *m*, $n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$

Theorem: If *m*, $n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$.

- *Proof:* Assume *m* and *n* are natural numbers where *m* < *n*. We need to show that $[m] \subseteq [n]$. To do so, pick some $x \in [m]$. We'll prove that $x \in [n]$.
	- Since $x \in [m]$, we know that $x \in \mathbb{N}$ and $x < m$. Then, because $x < m$ and $m < n$, we know that $x < n$. Collectively this means that $x \in \mathbb{N}$ and $x < n$, so $x \in [n]$, as required.

Notice that **there is no set-builder notation** in this proof. We were able to avoid it by using the rules for what $x \in \{y | P(y)\}$ say to do.

Announcements

- *Upcoming Deadlines*
	- (**Today**, 11:59 PM): Left-handed exam desk requests
	- (**Friday**, 1:00 PM): Problem Set 3
		- Start early and make slow and steady progress.
		- Attend OH sooner rather than later.
	- (**Friday**, 11:59 PM): Attendance opt-out
	- (**Sunday**, 7 PM): Midterm 1 Bonus

Announcements

● *Hodgepodge*

- Problem Set 3 LaTeX template updated Sunday evening.
- Task map updated.
- New "Resources" for the week now tagged as such in drop-down on course website.
- Looking for a pset partner? Post on Ed!
- Sean's OH have moved to CoDa.

● *Midterm 1*

- Logistics page unlocked.
- So many practice problems.
- More on Wednesday.

Readings

- *Read "Guide to Proofs on Discrete Structures."*
	- There's additional guidance and practice on the assume/prove dichotomy and how it manifests in problem-solving.
- *Read "Discrete Structures Proofwriting Checklist."*
	- Keep the items here in mind when writing proofs. We'll use this when grading your problem set.
- *Read "Guide to Proofs on Sets."*
	- There's some good worked examples in there to supplement today's lecture, several of which will be relevant for the problem set.

Next Time

● *Graph Theory*

- A ubiquitous, powerful abstraction with applications throughout computer science.
- *Vertex Covers*
	- Making sure tourists don't get lost.
- *Independent Sets*
	- Helping the recovery of the California Condor.

Appendix: More Sample Set Proofs

Theorem: Let *A*, *B*, *C*, and *D* be sets where *A* ⊆ *C* and *B* ⊆ *D*. Then *A* ∪ *B* ⊆ *C* ∪ *D*.

Theorem: Let *A*, *B*, *C*, and *D* be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof: Pick some $x \in A \cup B$; we need to show that *x* ∈ *C* ∪ *D*.

Because $x \in A \cup B$, we know that $x \in A$ or $x \in B$. We consider each case separately.

Case 1: $x \in A$. Since $A \subseteq C$ and $x \in A$, we see that $x \in C$, and therefore that $x \in C \cup D$.

 $Case 2: x \in B$. Then because $B \subseteq D$ and $x \in B$ we have $x \in D$, so $x \in C \cup D$.

In either case, we see that $x \in C \cup D$, as required.

Theorem: Let *A* and *B* be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(⇒) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

Either way, we have $x \in B$, which is what we needed to show.

Next, we'll prove $B \subseteq A \cup B$. Pick some $x \in B$. Since $x \in B$, we know that $x \in A \cup B$, as required.

(∈) Assume $A \cup B = B$. We need to show that $A \subseteq B$. So pick an $x \in A$; we need to show that $x \in B$.

Since $x \in A$, we know that $x \in A \cup B$. And since $x \in A \cup B$ and $A \cup B = B$, we see that $x \in B$, as required.

Theorem: Let *A* and *B* be sets. Then if $\wp(A) = \wp(B)$, then $A = B$.

Theorem: Let *A* and *B* be sets. If $\wp(A) = \wp(B)$, then $A = B$.

Proof: Assume $\wp(A) = \wp(B)$. We need to show that $A = B$, or, equivalently, that $A \subseteq B$ and $B \subseteq A$. Since the roles of *A* and *B* are symmetric, we'll just prove $A ⊆ B$.

Pick some $x \in A$; we need to show that $x \in B$. Since $x \in A$, we know that $\{x\} \subseteq A$. This means that $\{x\} \in \mathcal{P}(A)$, and since $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ we know $\{x\} \in \mathcal{B}(B)$. Thus we see that $\{x\} \subseteq B$, which in turn means that $x \in B$, as required.