

Lecture 08: Set Theory Revisited

Outline for Today

- Proofs on Sets
 - Making our intuitions rigorous.
- Formal Set Definitions
 - What do our terms mean?
- Appendices: Examples
 - Sample proofs to help you get the hang of the ideas here.

Recap from Last Time

	If you assume this is true	To prove that this is true
$\forall x. A$	Initially, do nothing . Once you find a <i>z</i> through other means, you can state it has property <i>A</i> .	Have the reader pick an arbitrary <i>x</i> . We then prove <i>A</i> is true for that choice of <i>x</i> .
$\exists x. A$	Introduce a variable x into your proof that has property A.	Find an x where A is true. Then prove that A is true for that specific choice of x.
$A \rightarrow B$	Initially, <i>do nothing</i> . Once you know <i>A</i> is true, you can conclude <i>B</i> is also true.	Assume <i>A</i> is true, then prove <i>B</i> is true.
$A \land B$	Assume A. Also assume B.	Prove A. Also prove B.
$A \lor B$	Consider two cases. Case 1: A is true. Case 2: B is true.	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. (Why does this work?)
$A \leftrightarrow B$	Assume $A \rightarrow B$ and $B \rightarrow A$.	Prove $A \rightarrow B$ and $B \rightarrow A$.
$\neg A$	Simplify the negation, then consult this table on the result.	Simplify the negation, then consult this table on the result.

New Stuff!

Proving Results from Set Theory

Claim: If *A*, *B*, and *C* are sets where $A \in B$ and $B \in C$, then $A \in C$.

Proof (?): Assume A, B, and C are sets where $A \in B$ and $B \in C$. We need to show that $A \in C$.

Since $A \in B$, we know that A is contained in B. Since $B \in C$, we know that B is contained in C. Therefore, because A is contained in B and B is contained in C, we know that A is contained is C. This means that $A \in C$, as required.

Claim: If *A*, *B*, and *C* are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof (?): Assume A, B, and C are sets where $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B. Since $B \subseteq C$, we know that B is contained in C. Therefore, because A is contained in B and B is contained in C, we know that A is contained is C. This means that $A \subseteq C$, as required.

Which (if any) of these claims are true? Answer at

https://cs103.stanford.edu/pollev

Lie: If *A*, *B*, and *C* are sets where $A \in B$ and $B \in C$, then $A \in C$.

Bad Proof: Assume A, B, and C are sets where $A \in B$ and $B \in C$. We need to show that $A \in C$.

Since $A \in B$, we know that A is contained in B. Since $B \in C$, we know that B is contained in C. Therefore, because A is contained in B and B is contained in C, we know that A is contained is C. This means that $A \in C$, as required.

Theorem: If A, B, and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Bad Proof: Assume A, B, and C are sets where $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B. Since $B \subseteq C$, we know that B is contained in C. Therefore, because A is contained in B and B is contained in C, we know that A is contained is C. This means that $A \subseteq C$, as required.

This can't be a good proof; the same basic argument proves a false claim! **Claim:** Let A, B, and C be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Proof (?): Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

Since $A \subseteq B$, all elements of A are in B. Since $A \subseteq C$, all elements of A are also in C. Therefore, all elements of A are in both B and C. Therefore, we see that $A \subseteq B \cap C$.

Claim: Let *A*, *B*, and *C* be sets. If $A \subsetneq B$ and $A \subsetneq C$, then we have $A \subsetneq B \cap C$.

Proof (?): Assume $A \subsetneq B$ and $A \subsetneq C$. We need to show $A \subsetneq B \cap C$.

Since $A \subsetneq B$, all elements of A are in B and there are other elements of B. Since $A \subsetneq C$, all elements of A are also in C and there are other elements of C. Therefore, all elements of A are in both B and C, and there are some other elements in B and C. Therefore, we see that $A \subsetneq B \cap C$.

(Reminder: $S \subsetneq T$ means $S \subseteq T$ and $S \neq T$.) Which (if any) of these claims are true? Answer at

https://cs103.stanford.edu/pollev

Theorem: Let *A*, *B*, and *C* be sets. If $A \subseteq B$ and $A \subseteq C$, then we have $A \subseteq B \cap C$.

Bad Proof: Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.

Since $A \subseteq B$, all elements of A are in B. Since $A \subseteq C$, all elements of A are also in C. Therefore, all elements of A are in both B and C. Therefore, we see that $A \subseteq B \cap C$.

Lie: Let *A*, *B*, and *C* be sets. If $A \subsetneq B$ and $A \subsetneq C$, then we have $A \subsetneq B \cap C$.

Bad Proof: Assume $A \subsetneq B$ and $A \subsetneq C$. We need to show $A \subsetneq B \cap C$.

Since $A \subsetneq B$, all elements of A are in B and there are other elements of B. Since $A \subsetneq C$, all elements of A are also in C and there are other elements of C. Therefore, all elements of A are in both B and C, and there are some other elements in B and C. Therefore, we see that $A \subsetneq B \cap C$.

(Reminder: $S \subsetneq T$ means $S \subseteq T$ and $S \neq T$.)

What Went Wrong?

- The style of arguments you've just seen are **not** how to prove results on sets.
- As you've seen:
 - The reliance on high-level terms like "contained" is not mathematically precise.
 - A discussion of "all elements" of a set is not how to reason about collections of objects.
- **Question:** How do we write rigorous proofs about sets?

The Importance of Definitions

- As you saw last week, formal definitions underpin mathematical proofs.
- The major issue from the previous proofs is that we haven't defined what our terms mean.
 - How do we define what $A \in B$ means?
 - How do we define what $A \subseteq B$ means?
 - How do we define what $A \cap B$ means?
- Think back to our proof triangle: we currently have intuitions for these concepts, but not formal definitions.

	Is defined as	If you assume this is true	To prove that this is true
$S \subseteq T$			
S = T			
$x \in S \cap T$			
$x \in S \cup T$			
$X \in \mathcal{O}(S)$			
$x \in \{ y \mid P(y) \}$			

Proofs on Subsets

Theorem: If A, B, and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Defining Subsets

• Formally speaking, if S and T are sets, we say that $S \subseteq T$ when the following holds:

$\forall x \in S. \ x \in T$

- Now, suppose you're working with a proof where you encounter $S \subseteq T$. Think back to the proof table.
 - To **assume** that $S \subseteq T$, what should you do?
 - To **prove** that $S \subseteq T$, what should you do?

Answer at

https://cs103.stanford.edu/pollev

A Correct Proof on Sets

- **Theorem:** If A, B, and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- **Proof:** Let *A*, *B*, and *C* be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required.

Theorem: If A, B, and C are sets where $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Let *A*, *B*, and *C* be sets where $A \subseteq B$ and $B \subseteq C$. We need to prove that $A \subseteq C$. To do so, pick some $x \in A$; we need to show that $x \in C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Similarly, since $x \in B$ and $B \subseteq C$, we see that $x \in C$, as required.

Bad Proof: Assume A, B, and C are sets where $A \subseteq B$ and $B \subseteq C$. We need to show that $A \subseteq C$.

Since $A \subseteq B$, we know that A is contained in B. Since $B \subseteq C$, we know that B is contained in C. Therefore, because A is contained in B and B is contained in C, we know that A is contained is C. This means that $A \subseteq C$, as required.

Unions and Intersections

Theorem: Let A, B, and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Unions and Intersections

• The statement $x \in S \cap T$ is defined as

$x \in S$ \land $x \in T$.

• The statement $x \in S \cup T$ is defined as

$x \in S$ v $x \in T$.

 These are operational definitions: they show how unions and intersections interact with the ∈ relation rather than saying what the union or intersection of two sets "are."

- **Theorem:** Let A, B, and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.
- **Proof:** Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.

Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Since $x \in A$ and $A \subseteq C$, we know $x \in C$. Therefore, we see that $x \in B$ and $x \in C$, so $x \in B \cap C$, as required.

Theorem: Let A, B, and C be sets. If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

- **Proof:** Assume $A \subseteq B$ and $A \subseteq C$. We need to prove that $A \subseteq B \cap C$. So pick some $x \in A$; we need to show that $x \in B \cap C$.
 - Since $x \in A$ and $A \subseteq B$, we know $x \in B$. Since $x \in A$ and $A \subseteq C$, we know $x \in C$. Therefore, we see that $x \in B$ and $x \in C$, so $x \in B \cap C$, as required.
- **Bad Proof:** Assume $A \subseteq B$ and $A \subseteq C$. We need to show $A \subseteq B \cap C$.
 - Since $A \subseteq B$, all elements of A are in B. Since $A \subseteq C$, all elements of A are also in C. Therefore, all elements of A are in both B and C. Therefore, we see that $A \subseteq B \cap C$.

Set Equality

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: See appendix!

Set-Builder Notation

Set-Builder Notation

• Let *S* be the set defined here:

 $S = \{ n \mid n \in \mathbb{N} \text{ and } n \ge 137 \}$

- Now imagine you have some quantity *x*. Based on this...
 - ... if you **assume** that $x \in S$, what does that tell you about x?
 - ... if you need to **prove** that $x \in S$, what do you need to prove?

Answer at https://cs103.stanford.edu/pollev

Set-Builder Notation

• Like unions and intersections, we have an operational definition for set-builder notation. It's the following:

Let $S = \{ y \mid P(y) \}$. Then $x \in S$ when P(x) is true.

- So, for example:
 - $x \in \{ n \mid n \in \mathbb{N} \text{ and } n \text{ is even } \} \text{ means } x \in \mathbb{N} \text{ and } x \text{ is even.}$
 - $x \in \{ n \mid \exists k \in \mathbb{N} . n = 2k + 1 \}$ means that there is a $k \in \mathbb{N}$ where x = 2k + 1. (Equivalently, x is an odd natural number)
- *Key Point:* The placeholder variable disappears in all these examples. After all, *it's just a placeholder*.

Proofs on Set-Builder Notation

Some Useful Notation

If n is a natural number, we define the set [n] as follows:

$$[n] = \{ k \mid k \in \mathbb{N} \land k < n \}$$

- So, for example:
 - $[3] = \{0, 1, 2\}$
 - $[0] = \emptyset$
 - $[5] = \{0, 1, 2, 3, 4\}$

Theorem: If $m, n \in \mathbb{N}$ and m < n, then $[m] \subseteq [n]$

Theorem: If $m, n \in \mathbb{N}$ and $m < n$, then $[m] \subseteq [n]$		
What We're Assuming	What We Need to Prove	
$m \in \mathbb{N}$	$[m] \subseteq [n]$	
$n \in \mathbb{N}$	$\forall x \in [m]. \ x \in [n]$	
m < n	$x \in \mathbb{N}$	
$[z] = \{ k \mid k \in \mathbb{N} \land k < z \}$	x < n	
$x \in [m]$		
$x \in \mathbb{N}$		
x < m		

Theorem: If $m, n \in \mathbb{N}$ and m < n, then $[m] \subseteq [n]$.

- **Proof:** Assume *m* and *n* are natural numbers where m < n. We need to show that $[m] \subseteq [n]$. To do so, pick some $x \in [m]$. We'll prove that $x \in [n]$.
 - Since $x \in [m]$, we know that $x \in \mathbb{N}$ and x < m. Then, because x < m and m < n, we know that x < n. Collectively this means that $x \in \mathbb{N}$ and x < n, so $x \in [n]$, as required.

Notice that there is no set-builder notation in this proof. We were able to avoid it by using the rules for what $x \in \{y \mid P(y)\}$ say to do.

	Is defined as	If you assume this is true	To prove that this is true
$S \subseteq T$	$\forall x \in S. \ x \in T$	Initially, do nothing . Once you find some $z \in S$, conclude $z \in T$.	Ask the reader to pick an $x \in S$. Then prove $x \in T$
S = T	$S \subseteq T \land T \subseteq S$	Assume $S \subseteq T$ and $T \subseteq S$.	Prove $S \subseteq T$. Also prove $T \subseteq S$.
$x \in S \cap T$	$x \in S \land x \in T$	Assume $x \in S$. Then assume $x \in T$.	Prove $x \in S$. Also prove $x \in T$.
$x \in S \cup T$	$x \in S \forall x \in T$	Consider two cases: Case 1: $x \in S$. Case 2: $x \in T$.	Either prove $x \in S$ or prove $x \in T$.
$X \in \mathfrak{G}(S)$	$X \subseteq S$.	Assume $X \subseteq S$.	Prove $X \subseteq S$.
$x \in \{ y \mid P(y) \}$	P(x)	Assume <i>P</i> (<i>x</i>).	Prove $P(x)$.

Announcements

• Upcoming Deadlines

- (Today, 11:59 PM): Left-handed exam desk requests
- (Friday, 1:00 PM): Problem Set 3
 - Start early and make slow and steady progress.
 - Attend OH sooner rather than later.
- (Friday, 11:59 PM): Attendance opt-out
- (Sunday, 7 PM): Midterm 1 Bonus

Announcements

Hodgepodge

- Problem Set 3 LaTeX template updated Sunday evening.
- Task map updated.
- New "Resources" for the week now tagged as such in drop-down on course website.
- Looking for a pset partner? Post on Ed!
- Sean's OH have moved to CoDa.

• Midterm 1

- Logistics page unlocked.
- So many practice problems.
- More on Wednesday.

Readings

- Read "Guide to Proofs on Discrete Structures."
 - There's additional guidance and practice on the assume/prove dichotomy and how it manifests in problem-solving.
- Read "Discrete Structures Proofwriting Checklist."
 - Keep the items here in mind when writing proofs. We'll use this when grading your problem set.
- Read "Guide to Proofs on Sets."
 - There's some good worked examples in there to supplement today's lecture, several of which will be relevant for the problem set.

Next Time

- Graph Theory
 - A ubiquitous, powerful abstraction with applications throughout computer science.
- Vertex Covers
 - Making sure tourists don't get lost.
- Independent Sets
 - Helping the recovery of the California Condor.

Appendix: More Sample Set Proofs

Theorem: Let *A*, *B*, *C*, and *D* be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

What I'm Assuming	What I Need to Show	
$A \subseteq C$	$A \cup B \subseteq C \cup D$	
$\forall z \in A. \ z \in C$	$\forall x \in A \cup B. \ x \in C \cup D$	
$B \subseteq D$	$x \in C$ or $x \in D$	
$\forall z \in B. \ z \in D$		
$x \in A \cup B$		
Case 1: $x \in A$		
Case 2: $x \in B$		

Theorem: Let A, B, C, and D be sets where $A \subseteq C$ and $B \subseteq D$. Then $A \cup B \subseteq C \cup D$.

Proof: Pick some $x \in A \cup B$; we need to show that $x \in C \cup D$.

Because $x \in A \cup B$, we know that $x \in A$ or $x \in B$. We consider each case separately.

Case 1: $x \in A$. Since $A \subseteq C$ and $x \in A$, we see that $x \in C$, and therefore that $x \in C \cup D$.

Case 2: $x \in B$. Then because $B \subseteq D$ and $x \in B$ we have $x \in D$, so $x \in C \cup D$.

In either case, we see that $x \in C \cup D$, as required.

Theorem: Let A and B be sets. Then $A \subseteq B$ if and only if $A \cup B = B$.

Proof: We will prove each direction of implication.

(⇒) Assume $A \subseteq B$. We need to show that $A \cup B = B$. To do so, we need to show that $A \cup B \subseteq B$ and that $B \subseteq A \cup B$.

First, we'll show $A \cup B \subseteq B$. Pick an $x \in A \cup B$. We need to show that $x \in B$. Since $x \in A \cup B$, we consider two cases:

Case 1: $x \in A$. Then since $x \in A$ and $A \subseteq B$, we have $x \in B$.

Case 2: $x \in B$. Then by assumption $x \in B$.

Either way, we have $x \in B$, which is what we needed to show.

Next, we'll prove $B \subseteq A \cup B$. Pick some $x \in B$. Since $x \in B$, we know that $x \in A \cup B$, as required.

(\Leftarrow) Assume $A \cup B = B$. We need to show that $A \subseteq B$. So pick an $x \in A$; we need to show that $x \in B$.

Since $x \in A$, we know that $x \in A \cup B$. And since $x \in A \cup B$ and $A \cup B = B$, we see that $x \in B$, as required.

Theorem: Let A and B be sets. Then if $\wp(A) = \wp(B)$, then A = B.

What I'm Assuming		What I Need to Show
$\wp(A) = \wp(B)$		A = B
$\wp(A)\subseteq \wp(B)$		$A \subseteq B$
$\forall Z \in \wp(A). \ Z \in \wp(B)$		$\forall x \in A. \ x \in B.$
$\wp(B)\subseteq \wp(A)$		$B \subseteq A$
$\forall Z \in \mathfrak{g}(B). \ Z \in \mathfrak{g}(A)$		$\forall z \in B. \ z \in A.$
$x \in A$	$x \in B$	
$\{x\} \subseteq A$	$\{x\} \subseteq B$	
$\{x\} \in \wp(A)$	$\{x\} \in \wp(B)$	

Theorem: Let A and B be sets. If $_{\mathscr{P}}(A) = _{\mathscr{P}}(B)$, then A = B.

Proof: Assume $\wp(A) = \wp(B)$. We need to show that A = B, or, equivalently, that $A \subseteq B$ and $B \subseteq A$. Since the roles of A and B are symmetric, we'll just prove $A \subseteq B$.

Pick some $x \in A$; we need to show that $x \in B$. Since $x \in A$, we know that $\{x\} \subseteq A$. This means that $\{x\} \in \wp(A)$, and since $\wp(A) \subseteq \wp(B)$ we know $\{x\} \in \wp(B)$. Thus we see that $\{x\} \subseteq B$, which in turn means that $x \in B$, as required.